Elektronlar atom merkezi (çekirdek) çevresinde kendi üstüne kapanan ve titreşen dalgalardır. Elektron, Ay’ın Dünya etrafında bir yörüngede döndüğü gibi hareket etmez. Elektron her an için o yörüngenin tamamında bulunarak yukarı ve aşağı titreşen bir dalgadır. Elektron hem parçacık hem de dalgadır (dalga-parçacık). Parçacık, bu titreşimlerin güçlü olduğu yerlerde daha çok bulunur. Titreşimler dalga fonksiyonu olarak adlandırılır. Parçacıkların titreşimi sabit değildir, değişkendir. Titreşimler sayesinde Belirsizlik ilkesine göre parçacıkların konumu ve hızı aynı anda yoktur. Bunu, izlediği belirli bir yolu olmayan, belirli bir hızı da olmayan bir “bulut” gibi düşünebiliriz.
Şimdi, gerek dağınımda olsun gerekse de parçacıkların çökmesinde olsun cisimlerin nasıl belirgin, görünür olduğunu yani nasıl var olduğunu ya da varın nasıl var olduğunu veya varlığın ne olduğunu -elbette ki bilimsel bilgilerlerle tutarlı olarak- kendime ait “3 Cisim” örneğimle açıklayacağım. Makro cisimler birbirini çökerten, bir arada bulunan parçacıklardan oluşur ve bu sayede belirgin, görünür olur. Normal koşullarda (şartlarda) nasıl bulunuyorsa o hâlde bulunan katı, sıvı ve gaz yapısında 3 tane birer metreküp hacimli cismimiz olsun. Yani, yerde bulunan 1 m3 toprak (a), okyanusta bulunan 1 m3 su (b) ve atmosferde bulunan 1 m3 gaz (c), detayların önemi yok, benzetmemin anlaşılması yeterli. O 1 m3lük toprak parçasını (a) oluşturan atomlardaki parçacıklardan herhangi birine “x”, -aynı şekilde- b’dekine “y” ve c’dekine “z” diyelim. Gazdan katıya -c’den a’ya- doğru gidildikçe atomlar daha sıkışık bulunur, bu da o 1 m3lük bölgedeki parçacıkların birbirleriyle daha çok çarptığı (etkileştiği) anlamına gelir ve bu etkileşme de evrenin her yerini dolduran fon ışıması fotonlarının evrendeki her parçacıkla etkileşmesinin -yani bizim o 1 m3teki parçacıklarla etkileşmesinin- üstüne eklenir. Böylelikle katıda etkileşme şiddeti yüksek, sıvıda orta ve gazda düşük olur. Parçacıkların -yüksek düşük fark etmeden- birbirleriyle etkileşerek çöktüğünü zaten biliyoruz. Şimdi, katıdaki etkileşme şiddeti daha fazla olduğundan x’in daha çok belirdiği (çöktüğü) alan daralır, yani bu alanda dalga titreşimleri artar; sıvıdaki etkileşme şiddeti katıya göre daha az olduğundan y’nin daha çok belirdiği alan x’e göre genişler, yani bu alanda x’e göre dalga titreşimleri azalır; gazdaki etkileşme şiddeti diğerlerine göre daha az olduğundan z’nin daha çok belirdiği alan y’ye göre genişler, yani bu alanda y’ye göre dalga titreşimleri azalır: Kısacası daha çok belirilen alanın genişliği z>y>x, daha çok belirilen alandaki dalga titreşimi x>y>z. Bu 3 parçacığın daha çok belirdiği alanların darlığı ve genişliği ve (veya) daha çok belirdiği alanlardaki dalga titreşimlerinin fazlalığı ve azlığının oranları çok büyük değildir, birbirine yakındır, yani bu 3 parçacık kendi atomunun bulunduğu yerin çevresinden -giderek azalarak- o 1 m3e kadar olan bölge içinde çok büyük olasılıkla daha çok belirir. Ama! z’nin y’ye göre, y’nin x’e göre vb. o 1 m3ün yakın çevresinde, o mahallede, o şehirde, o ülkede, Andromeda galaksisinde veya (ya da) evrenin ucunda belirme olasılığı daha fazladır.
Galaksiler arası tenhada başıboş gezen sadece bir tane elektron düşünelim. Elbette bu da fon ışıması fotonlarıyla etkileşecektir ama üstte anlattığım üzere birleşik bir cisimde bulunmadığından dolayı bunun daha çok belirdiği alan x, y, z vs.ye göre daha geniş olacaktır ve daha çok belirdiği alanda yine onlara göre dalga titreşimleri daha az olacaktır.
Sıfır etkileşime girmiş veya hiçbir etkileşime girmemiş olasılık dalgası durgun (titreşimsiz) bir hâldedir ama böyle bir şey daha önceden anlattığımız üzere olanaksızdır. Bu yüzden her olasılık dalgasının bir titreşimi vardır ve bu titreşim de evrenin tamamına yayılmıştır, ancak üstte de belirttiğim üzere bu titreşim bazı bölgelerde aşırı, bazı bölgelerde fazla, bazı bölgelerde az olarak -çoktan aza olarak- evrenin tamamını kapsar, evrenin ucunda neredeyse sıfıra yakın olsa da olasılık dalgasının hiçbir noktasındaki titreşim sıfır olamaz.[1]
Kaynak(lar)
[1] Amit Goswami vd., age., s. 1-170; Brian Greene, “Evrenin Dokusu…”, age., s. 155-161, 613. (252. sonnot da dâhil)